Subpart C—Design and Performance Requirements for Irradiators ## §36.21 Performance criteria for sealed sources. - (a) Requirements. Sealed sources installed after July 1, 1993: - (1) Must have a certificate of registration issued under 10 CFR 32.210; - (2) Must be doubly encapsulated; - (3) Must use radioactive material that is as nondispersible as practical and that is as insoluble as practical if the source is used in a wet-source-storage or wet-source-change irradiator; - (4) Must be encapsulated in a material resistant to general corrosion and to localized corrosion, such as 316L stainless steel or other material with equivalent resistance if the sources are for use in irradiator pools; and - (5) In prototype testing of the sealed source, must have been leak tested and found leak-free after each of the tests described in paragraphs (b) through (g) of this section. - (b) Temperature. The test source must be held at -40°C for 20 minutes, 600°C for 1 hour, and then be subjected to a thermal shock test with a temperature drop from 600°C to 20°C within 15 seconds. - (c) *Pressure.* The test source must be twice subjected for at least 5 minutes to an external pressure (absolute) of 2 million newtons per square meter. - (d) *Impact.* A 2-kilogram steel weight, 2.5 centimeters in diameter, must be dropped from a height of 1 meter onto the test source. - (e) Vibration. The test source must be subjected 3 times for 10 minutes each to vibrations sweeping from 25 hertz to 500 hertz with a peak amplitude of 5 times the acceleration of gravity. In addition, each test source must be vibrated for 30 minutes at each resonant frequency found. - (f) *Puncture.* A 50-gram weight and pin, 0.3-centimeter pin diameter, must be dropped from a height of 1 meter onto the test source. - (g) Bend. If the length of the source is more than 15 times larger than the minimum cross-sectional dimension, the test source must be subjected to a force of 2000 newtons at its center equidistant from two support cylinders, the distance between which is 10 times the minimum cross-sectional dimension of the source. ## § 36.23 Access control. - (a) Each entrance to a radiation room at a panoramic irradiator must have a door or other physical barrier to prevent inadvertent entry of personnel if the sources are not in the shielded position. Product conveyor systems may serve as barriers as long as they reliably and consistently function as a barrier. It must not be possible to move the sources out of their shielded position if the door or barrier is open. Opening the door or barrier while the sources are exposed must cause the sources to return promptly to their shielded position. The personnel entrance door or barrier must have a lock that is operated by the same key used to move the sources. The doors and barriers must not prevent any individual in the radiation room from leaving. - (b) In addition, each entrance to a radiation room at a panoramic irradiator must have an independent backup access control to detect personnel entry while the sources are exposed. Detection of entry while the sources are exposed must cause the sources to return to their fully shielded position and must also activate a visible and audible alarm to make the individual entering the room aware of the hazard. The alarm must also alert at least one other individual who is onsite of the entry. That individual shall be trained on how to respond to the alarm and prepared to promptly render or summon assistance. - (c) A radiation monitor must be provided to detect the presence of high radiation levels in the radiation room of a panoramic irradiator before personnel entry. The monitor must be integrated with personnel access door locks to prevent room access when radiation levels are high. Attempted personnel entry while the monitor measures high radiation levels, must activate the alarm described in paragraph (b) of this section. The monitor may be located in the entrance (normally referred to as the maze) but not in the direct radiation beam. - (d) Before the sources move from their shielded position in a panoramic